
Coverage scope, Run-tim
e, Effort, Cost

Nu
m

be
r o

f t
es

ts

Unit tests
(component tests)

White-box tests to cover edge cases, code branches.
Covers: Code paths, individual components (functions).

How? Test parameters, pre/post conditions, state changes, output. Mock dependencies.
Written by: Developer.

Ideally written Before function code; Last chance: Before commit (while building).
Key tech: xUnit, mock objects (PHPUnit, RSpec, QUnit, Jasmine, Unit.js, Hamcrest). 

Integration tests
(integration and testing, I&T)

Grey-box tests to cover interactions between objects/interfaces.
Covers: Success/failure states, component interactions.

How? Test subsystem inputs/outputs. Mock dependencies, shared resources, IPC.
Written by: Developer.

Ideally written Before object code; Last chance: Before merging feature-branch (while building). 
Key tech: xUnit, mock objects.

Acceptance tests
(conformance tests, behaviour tests, functional tests, UAT, validation testing)

Black-box tests to cover user paths through the system.
Covers: Functions correctly, can complete tasks, meets client's requirements.

How? Look at user story/ticket, write steps to complete.
Written by: PO/Client/Tester/Developer.

Ideally written Before UI; Last chance: Before merging feature branch.
Key tech: Gherkin, SimpleTest, manual tests (Quail, Behat, Selenium; a11y/browser tests).

Refinement tests
(UX tests, usability tests, business-value tests, ROI tests, end-user tests, field tests)

Black-box tests to determine if the proposed UI is useful, usable, aesthetic, identifiable, 
inspirational and valuable.
Covers: End-user experience.

How? Present design to users, gather data on how they experience it.
Written by: Designer/UX expert.

Ideally written After 1st design proposal; Last chance: Before finalizing design, after release.
Key tech: Visual diff tools, A/B testing frameworks, observation (Quail, Acquia Lift, PhantomJS, Selenium).

System testing
(end-user tests, field tests, regression tests)

Black-box tests to cover the system as a whole and catch regressions.
Covers: The system as a whole.

How? Regression, performance, load/stress/volume, compatibility, recovery tests.
Written by: Tester/Developer/PO.

Ideally written ; Last chance: After integrating code, before demo.
Key tech: Continuous integration tools, manual tests (New Relic).

Software testing


